Siliguri Institute of Technology

Department of Engineering Sciences and Humanities

$1^{\text {st }}$ Internal Examination - 2022 (Odd Semester)
Section-E
Paper Name: Mathematics IB
Paper Code: BS-M 102
Full Marks: 25

Group -A

Q1. (Answer any five Questions) $1 \times 5=5$
(i) The series $\sum_{n=1}^{\infty} 4$ is
[BS-M101.3]
(a) Divergent
(b) Convergent
(c) Oscillatory
(d) None of these
(ii) Let $\mathrm{x} \geq 1$ and $x_{n}=\left\{\left(2 x^{\frac{1}{n}}-1\right)^{n}\right\}_{n \in \mathbb{N}}$. Then the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges to
(a) 0
(b) x
(c) x^{2}
(d) $2 x$
[BS-M101.3]
(iii) The sequence $\left\{3^{-n}\right\}$ is
[BS-M101.3]
(a) convergent
(b) divergent
(c) oscillatory
(d) none of these
(iv) Which one of the following is not a lower bound of the sequence $\{3+\operatorname{sinn}\}$
(a) -2
(b) 2
(c) 1
(d) 3
[BS-M101.3]
(v) The value of the determinant $\left|\begin{array}{lll}100 & 101 & 102 \\ 105 & 106 & 107 \\ 110 & 111 & 112\end{array}\right|$ is
[BS-M101.5]
(a) 2
(b) 0
(c) 405
(d) -1
(vi) For any orthogonal matrix $\mathrm{A}, \operatorname{det} \mathrm{A}$ is equal to
[BS-M101.5]
(a) 0
(b) 1
(c) ± 1
(d) -1
(vii) The system of equations $x+2 y-z=2 ; 4 x+8 y-4 z=8$ has
[BS-M101.5]
(a) infinitely many solution
(b) no solution
(c) a unique solution
(d) none of these

Group -B

$4 \times 5=20$

(Answer any four Questions)

2. Test the convergence of the series $x-\frac{x^{2}}{\sqrt{2}}+\frac{x^{3}}{\sqrt{3}}-\frac{x^{4}}{\sqrt{4}}+\ldots$
[BS-M101.3]
3. Test the convergence of the series $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$.
[BS-M101.3]
4. Examine the nature of the series $\left(\frac{2^{2}}{1^{2}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{3}}{2^{3}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3}+\ldots . \quad$ [BS-M101.3]
5. Find the rank of the matrix $\left[\begin{array}{cccc}1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 3 \\ 1 & 3 & 4 & 1\end{array}\right]$
[BS-M101.5]
6. For what value of λ and μ the following system of equations
[BS-M101.5]

$$
\begin{aligned}
& x+y+z=6 \\
& x+2 y+3 z=10 \\
& x+2 y+\lambda z=\mu
\end{aligned}
$$

has (i) no solution
(ii) a unique solution
(iii) an infinite number of solution
7. If $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ find all eigen values of A and obtain all the eigen vectors corresponding to the eigen values.
[BS-M101.5]

